Towards the Automated Synthesis of a Gröbner Bases Algorithm

نویسندگان

  • Bruno Buchberger
  • Luis M. Laita
چکیده

We discuss the question of whether the central result of algorithmic Gröbner bases theory, namely the notion of S–polynomials together with the algorithm for constructing Gröbner bases using S–polynomials, can be obtained by “artificial intelligence”, i.e. a systematic (algorithmic) algorithm synthesis method. We present the “lazy thinking” method for theorem and algorithm invention and apply it to the “critical pair / completion” algorithm scheme. We present a road map that demonstrates that, with this approach, the automated synthesis of the author’s Gröbner bases algorithm is possible. Still, significant technical work will be necessary to improve the current theorem provers, in particular the ones in the Theorema system, so that the road map can be transformed into a completely computerized process. Hacia la sı́ntesis automática de un algoritmo de bases de Gröbner Resumen. Se aborda la cuestión de si el resultado central de la teorı́a algorı́tmica de bases de Gröbner, es decir, la noción de S–polinomio, junto con el algoritmo de construcción de bases de Gröbner basado en S-polinomios, puede obtenerse mediante la “inteligencia artificial”, es decir, por un método sistemático de sı́ntesis algorı́tmica. En concreto, se presenta el método “lazy thinking” para la invención de teoremas y algoritmos, que se aplica al esquema algorı́tmico de “par crı́tico/completitud”. Se presenta una “hoja de ruta” que demuestra que este enfoque permite la sı́ntesis automática del algoritmo de bases de Gröbner del autor. No obstante, será necesario mejorar los actuales demostradores de teoremas y, sobre todo, los del sistema “Theorema”, para que esa “hoja de ruta” se pueda transformar en un proceso completamente computerizado, lo que aún supondrá un trabajo técnico importante.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Proving in Geometry using Gröbner Bases in Isabelle/HOL

For several decades, algebraic method have been successfully used in automated deduction in geometry. Objects in Euclidean geometry and relations between them are expressed as polynomials, and algebraic methods (e.g., Gröbner bases) are used over that set of polynomials. We describe a formalization of an algorithm in Isabelle/HOL that accepts a term representation of a geometry construction and...

متن کامل

Gröbner Bases, H–bases and Interpolation

The paper is concerned with a construction for H–bases of polynomial ideals without relying on term orders. The main ingredient is a homogeneous reduction algorithm which orthogonalizes leading terms instead of completely canceling them. This allows for an extension of Buchberger’s algorithm to construct these H–bases algorithmically. In addition, the close connection of this approach to minima...

متن کامل

Gröbner-Shirshov bases for Schreier extensions of groups

In this paper, by using the Gröbner-Shirshov bases, we give characterizations of the Schreier extensions of groups when the group is presented by generators and relations. An algorithm to find the conditions of a group to be a Schreier extension is obtained. By introducing a special total order, we obtain the structure of the Schreier extension by an HNN group.

متن کامل

Gröbner-Shirshov bases for extensions of algebras

An algebra R is called an extension of the algebra M by B if M = 0, M is an ideal of R and R/M ∼= B as algebras. In this paper, by using the Gröbner-Shirshov bases, we characterize completely the extensions of M by B. An algorithm to find the conditions of an algebra A to be an extension of M by B is obtained.

متن کامل

Coset Enumeration of Symmetrically Generated Groups Using Gröbner Bases

A new method for coset enumeration in symmetrically generated groups is presented. This method is based on a Gröbner bases algorithm applied to polynomials in non-commuting variables with integer coefficients. Mathematics Subject Classification: 05A05; 20B05; 20B40

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004